전 장에서 SVM 알고리즘의 특정 예시, 모든 점을 완벽하게 분리할 수 있는 경우를 살펴보았다. 그러나 현실 속에서 데이터는 100% 정확히 분류하기 어려운 경우가 더 많을 것이다. 사과와 수박을 부피 및 무게에 따라 분류하는 것은 상대적으로 쉬울테지만, 사과와 오렌지를 분류한다고 하는 경우는 난이도가 더 높을 것으로 예상되지 않는가? 이번 장에서는 두 데이터를 깔끔하게 분리할 수 없는, 즉 어느정도의 오류가 불가피한 경우의 SVM 알고리즘에 대해 살펴보고자 한다. 그 전에, 간단히 Support Vector Machine 알고리즘의 명칭에 대한 유래를 소개하고자 한다. 지탱하는 Support Vector, 그 사이의 분류기 서포트 벡터의 개념을 이해하기 위해서는 볼록포, 혹은 Convex hull 에 ..